Евклид - краткая биография Евклида

Евклид. Биографическая справка

 

Евклид или Эвклид, (др.- греч. Ευκλε?δης)

Брокгауз и Ефрон:

(315—255 до Р. Х.) — один из великих математиков древнего мира, получил научное образование от учеников Платона и был приглашен в Александрию Птолемеем, сыном Лага; здесь, в Александрии он основал школу математики. Из сочинений его до нас дошли только следующие: "Элементы геометрии", книга под заглавием δεδ?μενα ("Данные"), трактата по геометрической оптике и катоптрике и часть сочинения о делении площадей многоугольников. Математики более позднего времени Папп и Прокл  упоминают и ссылаются на не дошедшие до нас книги Э.: четыре книги о конических сечениях, две книги о местах на поверхности и на три книги "Поризмы". Наиболее знамениты и наиболее известны "Элементы геометрии". Он первый дал настолько стройное, систематическое и столь изящное изложение геометрии прямых линий и круга, что в Англии до сих пор при начальном обучении геометрии придерживаются изложения Э. Геометрией занимались и раньше его многие греческие геометры. Прокл называет из числа их Гиппократа Хиосского, Леона, Федия Магнезийского, Гермотима Колофонского, который усовершенствовал открытия Евдокса и Фетеса и присоединил к ним свои собственные. Изложение "Геометрии" Э. состоит из 13-ти книг, к которым присоединяют две книги о пяти правильных многогранниках, хотя открытие этих тел несправедливо приписывают Гипсиклу Александрийскому, жившему 150 лет позднее Э. Собственно геометрия прямых линий, кругов и плоских фигур заключается в первых шести книгах, а в пяти последних книгах изучаются поверхности и тела, в 7-й, 8-й и 9-й книгах рассматриваются свойства чисел, в 10-й рассматриваются в подробности величины несоизмеримые. Автор не мог, конечно, пользоваться алгебраическими формулами, так как алгебра получила начало в Европе много столетий спустя, поэтому все рассуждения Э. носят характер чисто синтетический. Под "данными" подразумеваются те величины, которые на основании теорем, доказанных в "Элементах", могут быть определены из условий задачи. Если, напр., задана на плоскости определенная точка и круг определенного радиуса, центр которого имеет вполне определенное положение, то длины и направления касательных из точки к кругу суть прямые "данные". Что такое "поризмы" — представляется гадательным. Папп и Прокл, говоря о поризмах, выражаются столь неясно, что нельзя составить себе представления об этом предмете. Папп, между прочим, говорит о поризмах как о каком-то особом методе, применяемом с успехом при решении многих трудных задач. Роберт Симсон (см.), основываясь на неполных и неясных замечаниях Паппа, полагал, что поризмы представляют упрощенный способ вывода некоторых лемм; он даже воспроизвел 38 таких лемм. По объяснению Шаля (Chasles, "Aperçu historique") поризмы представляют собой нечто подобное сокращенному методу аналитической геометрии или, может быть, нечто подобное тем методам, которые употребительны в высшей геометрии. Издания сочинений Э. следующие: "Euclidis opera cum Theonis expositione" (греч., Базель, 1550); "Euclidis quae supersunt omnia" (греч. и лат., Оксфорд, 1703); "Oeuvres d'Euclide" (греч., латин., франц., П., 1814). На русском — "Эвклидовых Начал восемь книг", пер. с греч. Ф. Петрушевского с примечаниями (СПб., 1819).


 
БСЭ.3-е изд:

Евклид (Eukléides), древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биография, сведения об Е. крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в 3 веке до н. э. Е. — первый математик александрийской школы. Его главная работа «Начала» (в латинизированной форме — «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел (см., например, Евклида алгоритм); в ней он подвёл итог предшествующему развитию греческой математики и создал фундамент дальнейшего развития математики (см. «Начала» Евклида, Евклидова геометрия). Из других сочинений по математике надо отметить «О делении фигур», сохранившееся в арабском переводе, 4 книги «Конические сечения», материал которых вошёл в произведение того же названия Аполлония Пергского, а также «Поризмы», представление о которых можно получить из «Математического собрания» Паппа Александрийского. Е. — автор работ по астрономии, оптике, музыке и др. Дошедшие до нас произведения Е. собраны в издании «Euclidis opera omnia», ed. J. L. Heibert et Н. Menge, v. 1—9, 1883—1916, дающем их греческие подлинники, латинские переводы и комментарии позднейших авторов.



Энциклопедия Кирилл и Мефодий:


Евклид (ок. 365 — 300 до н. э.) — древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики. Работы по астрономии, оптике, теории музыки.

Сведения о времени и месте его рождения до нас не дошли, однако известно, что Евклид жил в Александрии и расцвет его деятельности приходится на время царствования в Египте Птолемея I Сотера. Известно также, что Евклид был моложе учеников Платона (427—347 до н. э.), но старше Архимеда (ок. 287—212 до н. э.), так как, с одной стороны, был платоником и хорошо знал философию Платона (именно поэтому он закончил «Начала» изложением т. н. платоновых тел, т. е. пяти правильных многогранников), а с другой стороны — его имя упоминается в первом из двух писем Архимеда к Досифею «О шаре и цилиндре». С именем Евклида связывают становление александрийской математики (геометрической алгебры) как науки.

Прокл в комментариях к первой книге «Начал» приводит известный анекдот о вопросе, который будто бы задал Птолемей Евклиду: «Нет ли в геометрии более краткого пути, чем (тот, который изложен) в «Началах»? На что Евклид якобы ответил, что «в геометрии не существует царской дороги» (аналогичный анекдот рассказывается также об Александре и ученике Евдокса Менехме, так что он принадлежит, видимо, к числу «бродячих сюжетов»).

«Начала»

Из дошедших до нас сочинений Евклида наиболее знамениты «Начала», состоящие из 15 книг. В 1-й книге формулируются исходные положения геометрии, а также содержатся основополагающие теоремы планиметрии, среди которых теорема о сумме углов треугольника и теорема Пифагора. Во 2-й книге излагаются основы геометрической алгебры. 3-я книга посвящена свойствам круга, его касательных и хорд. В 4-й книге рассматриваются правильные многоугольники, причем построение правильного пятнадцатиугольника принадлежит, видимо, самому Евклиду. Книга 5-я и 6-я посвящены теории отношений и ее применению к решению алгебраических задач. Книга 7-я, 8-я и 9-я посвящены теории целых и рациональных чисел, разработанной пифагорейцами не позднее 5 в. до н. э. Эти три книги написаны, по-видимому, на основе не дошедших до нас сочинений Архита.

В книге 10-й рассматриваются квадратичные иррациональности и излагаются результаты, полученные Теэтетом. В книге 11-й рассматриваются основы стереометрии. В 12-й книге с помощью исчерпывания метода Евдокса доказываются теоремы, относящиеся к площади круга и объему шара, выводятся отношения объемов пирамид, конусов, призм и цилиндров. В основу 13-й книги легли результаты, полученные Теэтетом в области правильных многогранников. Книги 14-я и 15-я не принадлежат Евклиду, они были написаны позднее: 14-я — во 2 в. до н. э., а 15-я — в 6 в.

Другие сочинения Евклида

Вторым после «Начал» сочинением Евклида обычно называют «Данные» — введение в геометрический анализ. Евклиду принадлежат также «Явления», посвященные элементарной сферической астрономии, «Оптика» и «Катоптрика», небольшой трактат «Сечения канона» (содержит десять задач о музыкальных интервалах), сборник задач по делению площадей фигур «О делениях» (дошел до нас в арабском переводе). Изложение во всех этих сочинениях, как и в «Началах», подчинено строгой логике, причем теоремы выводятся из точно сформулированных физических гипотез и математических постулатов. Много произведений Евклида утеряно, об их существовании в прошлом нам известно только по ссылкам в сочинениях других авторов.



Самин Д. К. 100 великих ученых:

О жизни этого ученого почти ничего не известно. До нас дошли только отдельные легенды о нем. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу, «этот ученый муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата, известный под именем «Геометра», ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира».

Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», — ответил ему ученый. Так в виде легенды дошло до нас это ставшее крылатым выражение.

Царь Птолемей I, чтобы возвеличить свое государство, привлекал в страну ученых и поэтов, создав для них храм муз — Мусейон. Здесь были залы для занятий, ботанический и зоологический сады, астрономический кабинет, астрономическая башня, комнаты для уединенной работы и главное — великолепная библиотека. В числе приглашенных ученых оказался и Евклид, который основал в Александрии — столице Египта — математическую школу и написал для ее учеников свой фундаментальный труд.

Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенный под общим названием «Начала» — главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры.

Предшественники Евклида — Фалес, Пифагор, Аристотель и другие много сделали для развития геометрии. Но все это были отдельные фрагменты, а не единая логическая схема.

Как современников, так и последователей Евклида привлекала систематичность и логичность изложенных сведений. «Начала» состоят из тринадцати книг, построенных по единой логической схеме. Каждая из тринадцати книг начинается определением понятий (точка, линия, плоскость, фигура и т. д.), которые в ней используются, а затем на основе небольшого числа основных положений (5 аксиом и 5 постулатов), принимаемых без доказательства, строится вся система геометрии.

В то время развитие науки и не предполагало наличия методов практической математики. Книги I—IV охватывали геометрию, их содержание восходило к трудам пифагорейской школы. В книге V разрабатывалось учение о пропорциях, которое примыкало к Евдоксу Книдскому. В книгах VII—IX содержалось учение о числах, представляющее разработки пифагорейских первоисточников. В книгах Х—ХІІ содержатся определения площадей в плоскости и пространстве (стереометрия), теория иррациональности (особенно в Х книге); в XIII книге помещены исследования правильных тел, восходящие к Теэтету.

«Начала» Евклида представляют собой изложение той геометрии, которая известна и поныне под названием евклидовой геометрии. Она описывает метрические свойства пространства, которое современная наука называет евклидовым пространством. Евклидово пространство является ареной физических явлений классической физики, основы которой были заложены Галилем и Ньютоном. Это пространство пустое, безграничное, изотропное, имеющее три измерения. Евклид придал математическую определенность атомистической идее пустого пространства, в котором движутся атомы. Простейшим геометрическим объектом у Евклида является точка, которую он определяет как то, что не имеет частей. Другими словами, точка — это неделимый атом пространства.

Бесконечность пространства характеризуется тремя постулатами: «От всякой точки до всякой точки можно провести прямую линию». «Ограниченную прямую можно непрерывно продолжить по прямой». «Из всякого центра и всяким раствором может быть описан круг».

Учение о параллельных и знаменитый пятый постулат Евклида («Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых») определяют свойства евклидова пространства и его геометрию, отличную от неевклидовых геометрий.

Обычно о «Началах» Евклида говорят, что после Библии это самый популярный написанный памятник древности. Книга имеет свою, весьма примечательную историю. В течение двух тысяч лет она являлась настольной книгой школьников, использовалась как начальный курс геометрии. «Начала» пользовались исключительной популярностью, и с них было снято множество копий трудолюбивыми писцами в разных городах и странах. Позднее «Начала» с папируса перешли на пергамент, а затем на бумагу. На протяжении четырех столетий «Начала» публиковались 2500 раз: в среднем выходило ежегодно 6—7 изданий. До XX века книга «Начала» считалась основным учебником по геометрии не только для школ, но и для университетов.

«Начала» Евклида были основательно изучены арабами, а позднее европейскими учеными. Они были переведены на основные мировые языки. Первые подлинники были напечатаны в 1533 году в Базеле Любопытно, что первый перевод на английский язык, относящийся к 1570 году, был сделан Генри Биллингвеем, лондонским купцом

Евклиду принадлежат частично сохранившиеся, частично реконструированные в дальнейшем математические сочинения Именно он ввел алгоритм для получения наибольшего общего делителя двух произвольно взятых натуральных чисел и алгоритм, названный «счетом Эратосфена», — для нахождения простых чисел от данного числа.

Евклид заложил основы геометрической оптики, изложенные им в сочинениях «Оптика» и «Катоптрика». Основное понятие геометрической оптики — прямолинейный световой луч. Евклид утверждал, что световой луч исходит из глаза (теория зрительных лучей), что для геометрических построений не имеет существенного значения. Он знает закон отражения и фокусирующее действие вогнутого сферического зеркала, хотя точного положения фокуса определить еще не может Во всяком случае в истории физики имя Евклида как основателя геометрической оптики заняло надлежащее место.

У Евклида мы встречаем также описание монохорда — однострунного прибора для определения высоты тона струны и ее частей. Полагают, что монохорд придумал Пифагор, а Евклид только описал его («Деление канона», III век до нашей эры)

Евклид со свойственной ему страстью занялся числительной системой интервальных соотношений. Изобретение монохорда имело значение для развития музыки. Постепенно вместо одной струны стали использоваться две или три. Так было положено начало созданию клавишных инструментов, сначала клавесина, потом пианино. А первопричиной появления этих музыкальных инструментов стала математика.

Конечно, все особенности евклидова пространства были открыты не сразу, а в результате многовековой работы научной мысли, но отправным пунктом этой работы послужили «Начала» Евклида. Знание основ евклидовой геометрии является ныне необходимым элементом общего образования во всем мире.

Умер Евклид между 275 и 270 до н. э. 

 


 

Соч.:

Начала Евклида, Книги 1–6, Книги 7–10, Книги 11–14, пер. с греческого и комментарии Д. Д. Мордухай-Болтовского, т. 1—3, М.—Л., 1948—50.

Euclid Elementorum geometricorum Libri XV 1558

Эвклид  Начала. Восемь книг. Книги 1-6, 11, 12. 1819 г.



Первоиздания книг Евклида:

Первое печатное издание Евклида Эргарда Ратдольта «Opus elementorum Euclidis Megarensis in geometriam artem, in id quoque Campani commentationes»(Венеция, 1482), считающееся переводом Кампануса «Начал» с арабского языка.

На греческом «Euclidis opera cum Theonis expositione» (Базель, 1533, 1550).

Первые 6 книг «Начал» в переводе Иоахима Камерария под редакцией Иоахима Ретика «Elementorum geometricorum libri sex, conversi in Latinum sermonem a Ioach. Camerario» (1549).

Первое издание «Катоптрики» (Париж, 1557).

Критика Евклида в историко-математическом сочинении Пьера Рамуса «Р. Rami Scholarum mathematicarum libri unus et triginta» (Франкфурт, 1559; Базель, 1569).

Латинский перевод 15 книг «Начал» Федериго Коммандино «Euclidis Elementorum libri LV una cum scholiis antiquis» (1572).

Комментированное издание «Начал» «Euclidis elementorum libri XVI cum scholiis» Христофа Шлюсселя (Клавия) в 1574 году.

На китайском языке первые 6 книг «Начал» издал Маттео Риччи во время своей миссии в Китае (1583—1610).

На латинском «Data» в 1625 году.

На греческом и латинском «Euclidis quae supersunt omnia» (Оксфорд, 1703).

Восстановление «Поризм» Евклида Робертом Симсоном "Two general propositions of Pappus, in which many of Euclid's porisms are included" (Глазго, 1723)

Учебник Роберта Симсона "The Elements of Euclid" (1756).

На русском «Эвклидовых Начал восемь книг», пер. с греч. Ф. Петрушевского с примечаниями (СПб., 1819).

Восстановление «Поризм» Евклида Мишелем Шалем «Les trois livres de porismes d'Euclide, rétablis pour la première fois, d'après la notice et les lemmes de Pappus, et conformément au sentiment de B. Simson sur la forme des énoncés de ces propositions» (Париж, 1860)


 

 

 

 



   
© 1995-2016, ARGO: любое использвание текстовых, аудио-, фото- и
видеоматериалов www.argo-school.ru возможно только после достигнутой
договоренности с руководством ARGO.